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ABSTRACT

Coordination deficiencies have been identifiedrafte March 2011 earthquakes in Japan in termstefduling
and allocation of resources, with time pressurgyuece shortages, and especially informational rsaicdy
being main challenges. We suggest a decision stippmtel that accounts for these challenges by diguan
fuzzy set theory and fuzzy optimization. Based equirements from practice and the findings of @erdture
review, the decision model considers the followpngmises: incidents and rescue units are spatatyibuted,
rescue units possess specific capabilities, prowgssnon-preemptive, and informational uncertaihtrough
linguistic assessments is predominant when onusiits vaguely report about incidents and theiitaites, or
system reports are not exact. We also suggest @&Mziarlo-based heuristic solution procedure andiecina
computational evaluation of different scenarios. Méachmark the results of our heuristic with resyielded
through applying a greedy approach. The resulisatel that using our Monte Carlo simulation to sale
decision support model inspired by fuzzy set thexany substantially reduce the overall harm.
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INTRODUCTION

Natural disasters, including earthquakes, tsundioisds, hurricanes, and volcanic eruptions, hauesed
tremendous harm and continue to threaten millidriisimans and various infrastructure capabilitieshegear.
Being consistent with the terminology of the Intgional Federation of Red Cross and Red Crescari¢tirs
(IFRC) and the U.S. Federal Emergency Managemeah&g(FEMA), we use the term “disaster” in the
following sense (IFRC): “A disaster is a sudderagdtous event that seriously disrupts the funétigrof a
community or society and causes human, materidleannomic or environmental losses that exceed the
community’s or society’s ability to cope using@&n resources.” In this study, we focus on disadbaised on
natural disasters, not on technological, man-madattack-based disasters. In contrast to ther lgfpes, their
natural counterparts are not preventable. Thusattiens that need to be taken before, during,aditea
disasters and the used data are different. For gheamisk management of floods and hurricanes caw @n
geological data, while the risk management of rarcégtacks by terrorists cannot do so.

The coordination of resources during natural desass characterized by a high level of informagion
uncertainty due to the chaotic situation, seveseurce shortages, and a high demand for timelynmdtion in
the presence of the disruption of infrastructungpsut (Chen, Sharman, Rao, and Upadhyaya, 2008). Th
March 2011 earthquakes near the coast of Senggin Jaanifested these presumptions, as did the raareayg
of the succeeding nuclear disaster (Krolicki, 20Ehergency operations centers (EOC) were confdaiat¢he
partial breakdown of information systems and uraeraccess infrastructures to incidents (roadblocks
Officials had to deal with numerous incidents whei@e than 27,000 people were found dead or missiag
some 150,000 Japanese displaced (Sanders, 201iwptavisation and decentralization of the actiohtcal
commanders and rescue teams have been noticethvidieement of numerous, international organizagion
with different disaster response policies, resaaraad technological infrastructures and capadslited to
distributed planning and implementing of respong®as (Chawla, 2011). Poor communication between
geographically dispersed EOCs, a lack of accurat®, dnd an immense time pressure intensifiedit@enicha
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(Deutsche Presse-Agentur, 2011; Dmitracova, 2@¥Hn though resource scarcity can occur, we aftatethe
“appropriate allocation of [spatially distributedsources is more important (...) [and] a problem of
coordination” (Comfort, Ko, and Zagorecki, 2004jrigner, 2011).

The above issues reveal that the automation ofatileg rescue units to incidents remains a chaléng
utilizing Emergency Response Systems (ERS). Intigeas told by associates of the German Fedegahgy
of Technical Relief (THW), assignments and scheslfde resources are still derived through the apitbn of
greedy policies: for example, based on a rankinga#élents in terms of destructiveness, the mogtree
incidents are sequentially handled by the closélgtrescue units, (also stated by Comfort, 19B@wever, this
rather straightforward — albeit in many cases comarud favorable — rule ignores estimated processimes

of incidents, which are often not exact but maysdigantly affect casualties of less severe inctdeand
thereby the resulting harm.

When EOCs face the challenge to coordinate thegue units, they usually find a chaotic situatiorvhich
much information is uncertain. For example, theesity of incidents is described in terms of lingitigerms,
such as “lots of damage” or “a little fire burning@@ubsequently, information on how much time resmits
need to process these incidents is vague, toochdatic situation does also not allow making pmecis
statements on how long rescue units travel betweerpoints of incidents as the traffic infrastrugtumay be
severely affected. All these types of informati@vé in common that the impreciseness of predici®dsie to
a lack of information, belief, and linguistic chetarizations, which all are deemed some of the inggbrtant
roots of uncertainty (Zimmermann, 2000). In theeadze of statistical information and in the presewice
subjective uncertainty we account for these robtmeertainty by drawing on fuzzy set theory (Zade965)
among the many available uncertainty theories. ¥8et theory in emergency response situations éas b
stated appropriate (Altay and Green lll, 2006) sTact is based on the idea that “a [fuzzy setrthbased]
framework provides a natural way of dealing witblgems in which the source of imprecision is thseaize of
sharply defined criteria of class membership rathan the presence of random variables.” (Zade®5)L9

We also argue that time is the most crucial fadtaing emergency response coordination and argubdo
primary goal to minimize completion times of inaide, where completion times can be defined as tination
of the occurrence of an incident until its extinoti As the literature provides only few papers enision
support in emergency response situations thatwidfakthe assignment of the rescue units to incislégtusing
optimization modeling (see next section), the paegpof our paper is to suggest a novel mathematezsion
model, and to propose and to evaluate a solutiarnidie (a Monte Carlo simulation).

The remainder of this paper is structured as fdltdvased on a review from scholars and intervieitls w
practitioners, we identify requirements for a diezissupport model in the subsequent section. Thindé
present our artifact, a quantitative decision mawni@rporating findings from Fuzzy (Set) Theory.ehhwve
describe the computational evaluation, which atdst advantages of the suggested solution appoeacta
procedure which is found in practice. The papesesowith a conclusion.

REQUIREMENT ENGINEERING

Our requirement engineering section considers twces: first, in order to account for the expesenf
practitioners, we interviewed associates of then@er Federal Agency for Technical Relief (THW), where
in direct contact with the first German search esgtue teams after the major earthquakes in Japdarich
2011 and who were knowledgeable with respect teiteneoordination. Second, we use knowledge and
experience of scholars with domain expertise @itare review).

The issue of allocating and scheduling rescue ahitsg emergency response has been addressethogily
in the literature. (Fiedrich, Gehbauer, and Rick2@90), (Rolland, Patterson, Ward, and Dodin, 2046d
(Wex, Schryen, and Neumann, 2011) all attest #sdue units’ assignments and schedules are anstundied,
yet highly relevant topic for IS research, and thaggest applying decision optimization models in a
centralized manner, with a particular focus onathecation of distributed rescue units to incideirtswever,
(Rolland et al., 2010) neglect the fact that reamiés are diverse in their skills. (Fiedrich et 2000) consider
only one type of incident; earthquakes. (Wex et2dl11) take heterogeneous rescue units into atéoun
coordination in a centralized way and they do motoentrate on one distinct disaster type only. Yt all
three aforementioned works lack is that they prepuaspossibilities to handle informational uncettgii.e.
due to linguistic assessments, even though albasiientify this issue as one crucial challengehke
autonomous agents community, several works have preposed that handle task allocation in uncertain
environments mainly by using auctions that eitreendt explicitly coordinate rescue agents or tlmandt fully
consider the characteristics of the emergency respdomain (Nair, Ito, Tambe, and Marsella, 2002;
Ramchurn, Rogers, Macarthur, Farinelli, Vytelingietsikas and Jennings, 2008).
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The first 72 hours after any catastrophe, the dleearitical deadline, are essential for surviviigelmann
and Fiedrich, 2007; Reijers, Jansen-Vullers, ZueMan, and Appl, 2007). Therefore, any researchenting
guantitative artifacts must demonstrate its abtlityre-)act timely in real-world applications. Asonsequence,
any decision support system has to provide allonatnd scheduling suggestions that are not onlstipedly
feasible and justifiable (in terms of specific eriti to be defined) but that are also made speaddjjable to

aid organizations. Thus, we define Requirement 1:

Timeliness of decision support

A lack of centralized coordination may yield dediccies in terms of control over actions of unitd arror-
prone supervision caused by inhomogeneous or diplzommands to multi-autonomous agents with lionite
information about other actors’ status and pos#i@hiry, Mullen, and Yen, 2009). When internatioaa
organizations come and work together during a thsathey consequently “put themselves under timérobof
the responsible EOC without losing their interaitarkic command structure” (cit. THW, translated).
Following the argument of (Rolland et al., 201@xttcongruent activities and non-interference anmantiple
decision-makers are ensured by separating opeahtioeas, we further argue that by installing asiec
support system for single, closed operational ape@srisdictions, computer assistance is more isberst,
penetrative and thus more effective. This is paldidy important for situations when single orgatians “are
assigned their own operational area, which is tbhdye operated independently such that the orgamizacts
as an EOC” (cit. THW, translated). Since key plagrtasks in disaster management also include the
assignment of distributed rescue units to incidantstheir scheduling, it is essential to considfrmation on
capabilities, processing times, and travel timeses€ue units as well as information on incidenatmns and
types, albeit information may be uncertain andanisp (Fiedrich et al., 2000). We need to assurae th
commanders do have such (complete) informatiorheim bwn resources and (at least uncertain) inftionan
incidents to process. This argument is reasonab@ngeographic) information systems are optimakyalled
and interconnected, suitable protocol standardst asiwell as communication between commandersand
site agents is distinct and stable. To sum up,d&eysion support system for resource assignmenkts an
scheduling needs to have such complete albeit taienformation on resources and incidents avégladgind
the commander in charge that applies the decisippart system can decide and act autonomously.
Requirement 2 identifies:

Completeness of (decentralized) information andsitet autonomy of decentralized commanders

“When several, differently-skilled rescue teamdatmbrate, it is often hard to strictly classify ith&tructure,
capabilities, and their behavior. In fact, rescogsuare diverse in their capabilities and sizes) Generally,
incidents are classified into types, such thafmtisspecialized rescue units are required, althauig more
than challenging to prioritize a scene and towlén search-and-rescue or firefighting brigadesl nede
demanded.” (cit. THW, translated) Accounting fastimsight of practitioners, we argue that decisapport
systems need to consider heterogeneous typesidéinis and distinct capabilities of rescue units. &ample,
units can be paramedics, fire brigades, or policernrecases where no detailed information is albéglait
seems straightforward to classify incidents cogrséred and to assign one of the rescue unitdstiemed
most appropriate for addressing the incident. heptases, more detailed information on incidents/ailable
and can be matched with specific capabilities e€we units. Requirement 3 reads:

Consideration of differently skilled rescue unitgleheterogeneous incidents

As mentioned above, during any natural disasterhnimformation remains uncertain: “decision support
systems used in disaster management must cop¢heittomplexity and uncertainty involved with the
scheduling assignment of differentially-skilled amnel and assets to specific tasks” (Rolland.e2@l0).
Thus, commanders often face uncertain, unconfirraed,even contradictory information (Comes, Conrado
Hiete, Kamermans, Pavlin, and Wijngaards, 2010js @lso includes statements on the severity lesfels
incidents. As characteristics of incidents areroftescribed and assessed by humans, linguistinatstins are
common. Other issues of (linguistic) uncertaintglile non-accurate approximations about processires,
distances between incidents and positions of regniig. Thus, we argue that decision support systesed to
account for linguistic, non-probabilistic informaitial uncertainty, Requirement 4

Consideration of linguistic informational uncertéyn

We recall that uncertainty in chaotic emergenayatibns occurs due to incomplete and impreciseliedt
information and not due to statistical uncertaif@gnsequently, we do not suggest a probabilisticropation
model but a decision model that draws on fuzzytesdry, fuzzy arithmetic, and fuzzy optimizatiorer
following description of the decision model brieftytroduces into the key concepts; for a compreiiens
overview of these areas, see (Buckley and Esladii2 2Klir and Yuan, 1995).
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A FUZZY DECISION MODEL

Fuzzy Set Theory

Fuzzy set theory generalizes traditional set thégrproviding for a degree of membership that iatés if an
element belongs to a fuzzy set, in contrast terset theory, wherein an element explicitly gitt@mes with
a set or not. A specific type of a fuzzy set isizzly number (Buckley and Eslami, 2002), which isrfally
defined by{(x, uy(x))|x € R}, uz: R - [0,1], whereN is referred to as fuzzy numbery is denoted as the
membership function of, and it outputs the degree with whicle R belongs taV. For example, the fuzzy
numberl0 which is to be equivalently seen as “real numistsse to ten” may be given by the membership
functionpug (x) = (1 + (x — 10)73)7! (x€ R*1?), up(10) = 1. Note that the membership function differs
from a probability density function in two regar(f_é)zo Uy (x) dx does not need to equal 1, and it mirrors the
subjective attitude of an individual rather thafleeting statistical evidence. This is advantageausases
where probabilities or exact data is not availablg,subjective estimates of experienced expegtgiaen. In
the emergency response setting such cases arallygirevalent. The Fuzzy Decision Model makesaisthe
concept of symmetric triangular fuzzy numbers. iArtgular fuzzy number N=(a,b,c) , a<b<c, {a,l€B} is a

g, ifa<x<b
fuzzy set over R, with the membership functigr(x) = %, ifb<x<c

o

0, otherwise

If 1:=(c-b)=(b-a), the triangular fuzzy number is syntinee We use symmetric fuzzy numbers witi®.1*b
depending on the degree of uncertainty we are dadihis corresponds to "10% fuzziness". While famny
crisp optimization problems algorithms are ava#alihis is not true for fuzzy optimization proble(Baickley
and Jowers, 2008). Thus, we apply a Monte Carlailsition for the computational evaluation in thddal-up.

Problem Description

The model is designed to schedule and assign varescue units to incidents. It favors commandétts w
decision autonomy by delivering allocation solu@nd schedules for all rescue units employed.eVbbrsing
question is how these units can be scheduled amignas to incidents such that the sum of all cotigidimes,
which are individually multiplied by the individu&ctors of destruction, can be minimized. Factdrs
destruction indicate the (ordinal) levels of setyeof incidents.

Incident 2 Incident 4 Incident 5
. 1 1 w=2
Rescue Unit 1 $22=3 =3.p,=6 $ae=3 W=2P,=2| 3,.=2 71
Incident 1 Incident 3
Rescue Unit 2 Sa=4 1 =5.7,=8 55=3 y=3.7,=3
Incident 7 Incident 6 Incident 8
: 3 we= 3, 3 3 .
Rescue Unit 3 Sia=4 =43 Eé,f‘ﬁ:ﬂ Fes=2 Wy=2.P=5
£
Incident 12 Incident 11
: ~ & & 2 &
Rescue Unit 4 Sox=2 fii=4P,=8 Sia=3 f=2p,=3
Incident 9 Incident 10
Rescue Unit 5 0s=3 Wy=5.p;,=8 ol o=l B3
) ol
t
Incident j
?Z:Time rescue unit k needs to move from incident/ | 33 ,:Reported factor of destruction of incident j (b-value of Fuzzy Set (a,b,c)) k=1 Casp_'fji' 12
depot i to incident j (b-value of Fuzzy Set(a,b,c)) }7' :Processing time of incident j when processed by rescue unit k (b-value) R

Figure 1. Desideratum: optimal schedules and assignments

We consider a situation in which the number of kadé rescue units is lower than the number ofdects that
need to be processed. This ratio accounts foriealypatural disaster situatiotDuring any large-scale
disaster, there tend to be more incidents thanuesmits. This is especially true within thoseicait minutes of
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the chaos phase.” (cit. THW, translatef) incident can be processed by a rescue unitibtitys rescue unit
features the specific capability that is requiregtocess this incident. Two types of time spapsalevant: a)
travel times that rescue units need to travel betvie/o incident locations, b) processing times.ilstrate
the problem description in Figure 1, which showeasible and valid solution of a problem instand &
rescue units and 12 incidents. In this instanae|dfiel of severity (factor of destruction)wf incidents varies
between 1 and 5. The sample schedule accountse@piecific requirements of the incidents as easbue unit
k features the respective capability that is regplivy incident j (cap=1).

Mathematical Model

We define completion times as the sum of the piginggimes and the time the incident had to "waittil

being processed by a qualified rescue unit. Thigiting time” consists not only of processing tinads
incidents that have been processed previouslydwaskigned unit but also of the time needed to rfrove one
incident to be processed to the next. In the asdigatting, we propose that a) the multiplicatioc@mpletion
times and factors of destruction is an adequate proxy for the quality of emergersponse, b) each incident
can be processed by at most one unit at a timeeaith unit processing at most one incident at a,teh
processing is non-preemptive, and d) some dataépsing timeﬁ, severity of incident®7, and travel times

EE) is available, deterministic, but highly uncertaimd therefore not crisp. A discussion of thesaragsions is
included in our conclusions. Summarizing the restms and requirements from above, this decisiodehcan
be formulated as a non-linear binary optimizaticsdel. The mathematical formulation is provided helo

n n m n
minZWj(Zle[‘ Y{f+(plk+sl’j) Xl-’j-+Y§ <ZX{§S{§) ) ®))
i 1=0

j=1 i=0 k=1
n m
ZZX{;=1, j=1..n )
s.t. i=ok=1
n+l m
ZZX{;: , i=1.,n (c2)
j=1k=1
n+1
X5=1, k=1,..,m (c3)
j=1
n
nggm)=1, k=1,.,m 4
i=0
k k k FR— R p— .
Yi+Yj—-1<Yj, i=0,.,n;j=1,..,n+ Lk ©s)
=1,.ml=1,..,n
n n+1
ZX{;:ZX{;, l=1,..,nk=1,...m (ce)
i=0 j=1
XE<vf, i=0.,mj=1.,n+Lk=1.,m 7
Y¥ =0, i=0..,n+Lk=1..,m (c8)
n+1
ZXL-’;S capy; i=1,..,nmk=1,..,m (C9)
j=1
k k - A — .
X5, Y € {0,1}, i=0,..,mj=1,..,n+1Lk (c10)
=1,..,m
capkjE{O,l}, k=1,..mj=1,..,n (C11)
w,pk, sk € R= (c12)

In addition to the real incidents 1,..,n we needdd two fictitious incidents ‘0’ and ‘n+1’ witflg =pk., =0,
ands(’,‘] to be the estimated time that rescue unit k neeed®ve from its starting location (defined as deit

i=0) to the location of incident j, arxfu(nﬂ) = 0 for all rescue units k. The objective function @)xhe model
minimizes the total weighted completion times catincidents. Two decision variabla@j anin’; are

introduced indicating a mediate or immediate predsar relationship between i and j when procesgeddzue
unit k. w; is the reported factor of destruction of incidgand is modeled as a triangular fuzzy number.
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Consequently, the lower the factor of destructtbe,less severe is the incident. An explanaticthefother
mathematical terms used is provided in Table 1.

Decision Variable I nterpretation
X5 X[ = 1ifincident i is processed immediately
before incident j by rescue unit k, and 0 otherwige
14 Y/ = 1ifincidentiis processed before incident j
by rescue unit k, 0 otherwise
Fuzzy Parameters I nterpretation
ﬁ Processing time that unit k needs to process

incident i, {97 = oo if rescue unit k is not capable
of processing incident i

sk Travel time that unit k needs to move from location
of incident i to location of incident |
w, Reported factor of destruction of incident j
equivalent to the severity level of an incident
Crisp Parameter I nterpretation
capy; capy; = 1 if rescue unit k is capable of addressing

incident i, and O otherwise

Table 1. Explanation of mathematical terms

Constraint (C1) ensures that for each real incitlente is exactly one incident that is processedediately
before. Similarly, (C2) ensures that for each meeident there is exactly one incident that is pssed
immediately thereafter. Constraints (C3)-(C4) gusra that in a feasible solution each rescue asjarts
processing the fictitious incident O and ends pseitgy the fictitious incident n+1, respectively5j@ccounts
for the transitivity criterion of any predecesselationship. Yet, if an immediate predecessor fspecific
incident 1’ exists, there also has to be a successor (C8).i(@icates that an immediate predecessor is a
general predecessor. (C8) prohibits a reflexivesatlior indirect predecessor relationship. (COussthat a
rescue unit that is assigned to an incident possdhs required, incident-specific capability. (Ctakes the
model a binary program. (C11) declares if a resmieis capable of operating an incident or notlZCdefines
all other parameters used. Each feasible solufidineominimization model represents a valid scheauld
assignment for all units.

This Fuzzy Decision Model is especially able to agminformational overload and linguistic uncertgioy
integrating fuzzy parameters (Requirement 4): irnigeness in reports from on-site forces is prevaldren
determining travel and processing times, as wedleagrity of incidents. Furthermore, the modelse apt to
assist (decentralized) commanders with decisiooreumhy but does not require exact (crisp) but coteple
information about all parameters (Requirementi2the adjacent sections, it will be shown thatrtioelel is
adequate to deliver timely results within decemtiraes when applying the solution heuristic (Reguoient 1).

The idea to search for something optimal during diegister is questionable and can be doubted, iafipec
when integrating uncertain information (fuzzy paedens) into the model. We therefore talk aboutphest for
the most effective allocations of rescue unitsriruacertain setting. Disaster situations are englviery fast
sometimes (based on incoming information abousttuation, incoming new resources, or on statusgés of
existing resources). Even though the presentedapprseems to not account for this inherent dynamicto

be static, wexplicitly suggest running the optimization of weighted catiph times anew once other incidents
appear or rescue units become idle (continuousnigation process). This way, alternatives and deasscan
also be revisited and alterations be integrated.

COMPUTATIONAL EVALUATION

The Fuzzy Decision Model is a generalization ofrirechine scheduling problem “Identical parallel trine
non-preemptive scheduling with minimization of safrtompletion times” (Blazewicz, Dror, and Weglarz,
1991). Since any solution of the machine schedyimdplem is computationally inefficient and thus-R&rd,

so is its transformation to the Fuzzy Decision Mddee Appendix). As we face instances in practitat, need
to be tackled as fast as possible, we suggest aeMiarlo simulation as heuristic method. In thesabs of
knowledge of optimal solutions, we do not know loweunds for the minimization instances, but wewno
solutions that would result from applying a grebewristic. Recapitulating the greedy approach, sseime
that the most severe incident is assigned to theest, idle rescue unit. The evaluation of all Mo@arlo results
is based on the comparison with this benchmarlcatitig the proportionate reduction of harm.
Implementations were written in the numerical cotmmenvironment MATLAB.
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Data Generation and Origin

Information for conducting our simulation runs &od configuring data settings was integrated irtersrios in
accordance to the THW interviews. We consider stnaveels as for most incidents occur in overcrowdeshs,
such as cities, where rescue units are placedvadiatiose to incidents. We also assume that fssiog times
exceed travels, due to the hypothesis that urbeasaare endangered more often than rural areab wésalt in
lower ratios of travel to processing times. Theades of destruction indicate levels of severity axgress five
different stages for each incident, we refer toatieisory system concerning threat conditions ésicr
introduced by the U.S. Department of Homeland Sgcdow (1), guarded (2), elevated (3), high (dihd
severe (5) harm. We tackle informational uncertainyt assigning vague linguistic assessments ofragigients
to one of the ordinal factors of destruction expeelsas fuzzy numbers. This assignment takes plaea w
linguistic reports about incidents, casualties, dachage need to be processed and incidents néed to
prioritized. For example, reports about incidentiidating “little damage” or “minor wounds” are apged a
fuzzy number close to 1 (low). Whereas reports aliojured, trapped, or exposed people” will besddied by
a much higher fuzzy number, i.e. 5 (severe). Plaate that any assignment of terms to a fuzzy nunsheever
distinct (and thus fuzzy) and is always dependimghe specific situation of the disaster. We coeisttlis
prioritization of incidents to be crucial.

The number of capabilities of rescue units is adivie, due to the difficulty to clearly classifyl akilled units
during any disaster (i.e. paramedics, fire brigagelce enforcement, military forces, or volunte®iith
various other skills). We extend the classificatidmescue units stated by (New South Wales Goventn
Any rescue unit possesses one distinct capabditi T he fulfillment of Requirement 3 can be gusrad by
this random assignment of rescue units’ capalsiti@pping real world scenarios with heterogenecidents
that require specialized forces.

In all simulation runs executed, we explicitly sopp an ad-hoc, iterative operation mode and tlnasinuous
optimization, as noted in the above section. Simeanotivated our decision model to work for (decalited)
commanders with decision autonomy within their ayperational area (Requirement 2), we assume thée&um
of incidents (within this area) to not exceed 20 time. We assume the number of rescue unitg;hndme
available and idle at the time of optimizationntit exceed 20. Since we advise to keep plannimgvals short,
we may execute an iterative Monte Carlo simulatfmiterative Monte Carlo simulation (continuous
optimization respectively) is equivalent to thegafed dispatch of assignments and schedules faraemits.
Therefore, our approach is apt to react fast andlyi (Requirement 1) to any upcoming situationarae

during the disaster. For our computational evatumatve regard seven different scenarios that résurt
permuting numbers of incidents and/or units.

Parameter Value, Range, Distribution Rationale

Rescue units {10,20} Realistic numbers of rescuéswand
Incidents {20,50,100, 200} incidents within operational areas
Processing Normally distributed: p=20;=10 Occurrence of disasters close to

timespy, overcrowded areas (thus: low travel times

Travel timess;, | Normally distributed: p=16=0.3 between incidents); WLOG: significant
endurance of (mean) processing times to
(mean) travel times (factor: 20:1)

Factors of Random Integer: {1,..,5} Distinct risk levels inthaced by the U.S.
destructioriv; Department of Homeland Security
Capabilities Al: Search and Rescue Distinction of units’ types and skills

{Aq,.., A} A2: Paramedics / Medical Retrieval extending the classification of (New South
n=5 A3: Fire Brigades Wales Government)

A4: Police Units
A5: Special Casualty Access Team
Iterations 1000 No significant improvements in the
objective value beyond this point

Table 2. Settingsin randomly generated scenarios

Results

We benchmarked all Monte Carlo simulation resutihe results generated by a greedy policy (however
did not determine optimal solution values or loWweunds): the most severe incident is assigneditisest, idle
rescue unit and the remaining idle rescue unit@weated to incidents in the same manner. Weeptes
proportions of Monte Carlo simulation results togh of the Greedy Policy by means of box plots. @alye
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represents the ratio of objective values (totablviid completion times) between the Monte Carlaiftion
and the greedy heuristic. The box plots comprisentikans (red dash), the quartiles (ends of bo), th
lowest/highest datum within 1.5 IQR (whiskers), aticbutliers (stars). Thus, if both the Monte ©arl
simulation and the benchmark deliver the same asggt and schedule, and thus the same objective vile
ratio would be presented as ‘1.0". If Monte Carérfprms better than the benchmark, thus the toéédhted
completion times are lower, the ratios also tendedower. 7 different scenarios (10 instances ebabe been
generated randomly according to the preconditiongible 2. All Monte Carlo simulations have beeorédd
after 1,000 iterations to allow for acceptable imes in practice. No significant improvements ia thsults
have been identified thereafter. The number oéitens does affect the running time and the resyljuality of
the Monte Carlo simulation. Yet, 1,000 iteratiofishee Monte Carlo simulation were run within 17 woii@s for
the worst-case scenario (20,200). Results werdngatan 2 minutes for the (10,20) scenario (beseta
Results of the Greedy heuristic have been genelsizeeen several seconds (best-case) and 2 mifwiest-
case).

1.0t

°
S
-
I

el

1
i |
! 1
! |
! 1
! 1
! |

1

Ratio of objective values
Greedy : Monte Carlo

o
~

0.6k , i : g , o]
(10,20) (10,50) (10,100) (10,200) (20,50) (20,100)(20,200)

Scenario (Rescue Units, Incidents)
Figure 2. Resultsindicating theratio between the heuristics used.

As Figure 2 indicates, the Monte Carlo simulati@nfprms better than tHéreedy Policy Ranges of deviation
of simulation results were acceptable for all peoblscenarios and all results did not exceed thehoeark
(proportions<1.0). In scenario (10,20), the Monte Carlo simolativas even able to generate a total weighted
completion time of less than a quarter of which ldcave been caused by the greedy heuristic. MGatd
delivered damage reductions of at least 10%-20%venage compared to the benchmark. Apparentlyratties
are closer to 100% the more complex the scenaebéstarting from 20 rescue units). This phenomeaaamot
surprising as the fraction of the solution spaeé tiets evaluated by the Monte Carlo simulatiodides with
increasing instance size. A countermeasure would bcrease the number of iterations in the Md2delo
simulation, which in turn would require having dalle more computing power than we had (in order to
sustain the efficiency and thus the applicabilityhe Monte Carlo simulation in practice). Basedloa results
at hand, we observe a high coefficient of variafmmsome scenarios that we explain as a conseguenc
“fuzzifying” the parameters, which may reflect thest of incorporating linguistic vagueness.

All results were subjected to the Shapiro-Wilk #&apiro and Wilk, 1965) to prove normality. Prexen
normality holds as necessary condition for furtdealysis: results of significance tests expresisatithe
simulations of all our models do outperform thedyenark within the confidence intervals of a 95%
significance level except for instance (10,100) rghee normal distribution of the results was rejécteur
results attest that solving our models with Mongl€ outperforms the heuristic which is appliegbractice.

CONCLUSION

The management of natural disasters poses imméafiermges ranging from informational uncertaintyte
coordination problem of distributed, heterogenemssue units, since disasters continue to hit ocietes.
Although NDM has evolved to a research disciplifere IS artifacts have already been proposed,idacis
support procedures for assignments and schedutesaie units have mostly been neglected in researc

Addressing this lack in research, the paper prapasguantitative decision support model for thénogit
allocation of distributed, heterogeneous rescutsdmaised on fuzzy set theory to deal with nonsttedil
informational uncertainty. Requirements identifiedhe literature and in interviews are accountad ©ur
Monte Carlo-based solution heuristic offers decisapport timely to any commander. While the pregos
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decision model may be particularly useful in theg@nce of complex situations with large numberestue
units and incidents, any assignments and schedfitescue units determined through computatiomate
intended to replace the actual decision makinggs®nor the autonomy of commanders but may serve as
valuable decision support only. When seen in theecd of solving a sequence of model instances e,
our decision support approach also accounts fodyhamics and unpredictability in disaster manageme
situations, which are rooted in the occurrenceenf or newly assessed incidents and a changingabiliil of
rescue units. Thereby, our approach can be embeddetime-continuous optimization process.

Due to the computational hardness of our decisiodety we draw on Monte Carlo simulation and
computationally demonstrated its benefits. Theltestnow that there is large potential to improgreedy
heuristic to allocate and schedule rescue uniteohelude, we are aware that our research stilshawe
limitations and invites for future work: (1) We dude the possibility that rescue units may fatignd thus
refrain from a reduction in performance of rescoisuover time. (2) Our model does not accountifoe
windows of incidents. Such windows are appropneten casualties have a finite “time to live” torescued.
(3) The model does not consider pre-emptive appemd4) As real-life data-sets merely exist, edirarios
had to be randomly generated. Thus, empirical rebaa necessary to gather more realistic data.
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APPENDIX

Proof of NP-hardness

The Fuzzy Decision Model (M1) is a generalizatiéthe machine scheduling problem “Identical patalle
machine non-preemptive scheduling with minimizatdérsum of completion times” (M2), which is NP-hard
(Blazewicz et al., 1991): if we map incidents obhg@nd rescue units on machines, then the geradrafiz
refers to the fact that our problem provides faugdimes (travel times), non-identical machines] a
constraints on the assignment of rescue unitscideénts. Given an instance of M2, we can map tfggnce
onto an instance of M1 (in polynomial time) by igimgy each parameter that belongs to a fuzzy setehing

EE = 0 for all jobs i,j and for all machines k, by seg'mf‘l = plk2 for all jobs i and all machines knd k, and

by settingcap,,; = 1 for all rescue units k and for all incidents i.uBhour problem is NP-hard, too. Integrating
Fuzzy Set Theory in this proof even raises the dexity.
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